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Abstract Text 
Experimental determination of which enzymes need to be regulated in a metabolic pathway is a hard 
problem. Consequently, regulation is known only for well-studied reactions of central metabolism in 
various model organisms. In this study, we use control theory and statistical thermodynamics as a 
theoretical framework to learn optimal enzyme regulation policies from experimental data. The 
reinforcement learning method learns to match physiological levels of metabolites while maximizing the 
entropy production rate, or analogously, minimizing the heat loss while maximizing the power 
generated by the pathway. The learning takes a minimal amount of time when metabolic control 
analysis is used as a guide, and a efficient greedy method takes only a few seconds to give similar 
results. We demonstrate the process on four pathways in the central metabolism of Neurospora crassa 
(gluconeogenesis, glycolysis-TCA, Pentose Phosphate-TCA, and cell wall synthesis) that each require 
different regulation schemes.   

The greedy method is applied in four steps: (1) a new convex optimization approach based on Marcelin’s 
1910 mass action equation is used to obtain the maximum entropy distribution, (2) the predicted 
metabolite concentrations are compared to experimental observations using a loss function from which 
post-translational regulation of enzymes is inferred, (3) enzyme regulation is selected using metabolic 
control analysis, (4) the system is re-optimized until loss function values are acceptable.  After 
convergence, rate constants are determined from the metabolite concentrations and reaction fluxes, 
and a full ODE-based, mass action simulation with rate parameters and post-translational regulation is 
obtained.  
10 Simple Rules: The general context of the model is defined in all publications and in the Jupyter 
notebooks accompanying the model. Currently, the model only addresses the rate equations of 
metabolic processes, and only parameters for this context are available. In each publication and in the 
Jupyter notebooks, care is taken to describe how metabolomics data can appropriately be incorporated 
into the model, and the limits of the data itself. The model is currently limited to a well-mixed 
assumption regarding distribution of metabolites in the cellular compartments. Version control is 
maintained through Github repositories. The simulation method is documented not only in the methods 
section of each publication, but each modeling publication includes a Jupyter notebook demonstrating 
the implementation and use of the model. Each model is disseminated as a Jupyter notebook that 
includes not only the model, but the implementation of the model in code. The model and approach 
were evaluated  with respect to uncertainty quantitation. We have now implemented various versions 
of general model in Matlab, Python and C. The results are implementation independent. Our current 
metabolic model is available in SBML, but not yet is the reinforcement learning model available in SBML. 


